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Abstract.  Given a discrete (“Point Cloud”) representation of a surveyed object it is possible 

to analyse its three dimensional features with the help of several planar sections. 
We survey a few applications of original algorithms to specific cases of interest in 
archaeology or architecture such as reconstruction of fragmented objects or symmetry 
detection. 
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1 Introduction 
 
Data sets coming from modern surveys (see [2], [4]) are basically made by a long list of coordinates 
of points detected on the surface of the object under study. 
 
Each point can be associated to some local feature: color (photogrammetric survey), reflectance (an 
index of material reflection from laser scanner survey), orientation (average normal to the closest 
faces of the triangulated surface through the points) but point coordinates are often enough to 
evaluate its 3D geometrical model and feature. 
 
The algorithms mentioned in this paper have as input the point cloud of a given fragment, or portion 
of a monument, and as output the best possible sectional curve on a given plane: with the help of 
several planar sections of an object it is then possible to analyse  its three dimensional features. 
 
Applications in Cultural Heritage presented in this paper run from the detection of an optimal 
fluting column model, in the virtual reconstruction of the Arch of Titus at the Circus Maximus in 
Rome (see [3], [8], [10]), to the contact probability of two possibly adjacent fragments, in the 
recomposition and restoration of the fragmented statue of S. Andrea at Stiffe, L’Aquila (see [1], [6], 
[9]) or the shape and tasselation of Borromini’s San Carlino dome (see for example [5], [7], [12]). 
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2 Planar sections of a point cloud 
 
Starting from the list of points over a column fragment, as in Fig.1, and for a given plane we 
test a segmentation procedure to approximate its curve of section. Starting as in Fig. 1a, we 
select all those points at a distance smaller than a certain threshold from the fixed plane and 
we project them (see Fig. 1c) on the plane. Shape thickness in Fig. 1d depends on plane 
orientation and on the fixed threshold. 
 
 

 
 

Fig. 1.  Points on a given plane section of a surveyed column fragment: a) selected points at a 
distance from the given plane below a threshold; b) selected points in a box; c) projection of 
selected points on the given plane; d) planar representation of selected points: thickness depends 
on plane orientation and threshold 
 
 

Decreasing the threshold we may look for a thinner curve, as regular as possible. Such a curve-like 
shape will be made of unordered points, difficult to connect but still useful for testing orientation 
and symmetry. 
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As a second step we evaluate an interpolating curve with the special feature of being parametric. 
Among several algorithms we choose to draw a polyline, ordering the selected points,  or to apply 
a continuation method with an appropriate condition. 
 
Another possible issue with a planar parametric curve as output (see [9]) is to find the border of 
a given set of points S on the plane: this could be found with a convex hull algorithm or with the 
algorithm shown in Fig. 2. 
 

 
 

Fig. 2.  a) Properly choosing the maximal circle of the circumscribed sphere connect the points 
of the set at minimal distance; b) take a uniform set of points on the interpolating parametric 
curve and iterates the procedure; c) corrections for straight portions of the limiting parametric 
curve 

 
In order to detect a parametric border of S (small black points in Fig. 2) one can start with a uniform 
distribution of base points on a circle containing S, select for each base point the element of S at 
minimal distance (large blue points in Fig. 2a) and construct an interpolating parametric curve. 
 
On this new curve take a uniform distribution of new base points and iterate the procedure: some 
corrections might be useful to prevent stright pieces of the limiting parametric curve which prevent 
to move closer to S. This algorithm works also in three dimensions. 
 
 
3 Parametric curve of sections and inflection points 
 
The first example refers to the application of an automatic procedure (see [7]) for the extraction of 
a piecewise regular parametric curve of section directly from the point cloud. 
 
To detect a moulding profile of a surveyed fragment of the Arch of Titus at the Circus Maximus in 
Rome (see Fig. 3) we first have to select a relevant plane of section: if the point cloud is properly 
oriented  we could choose a vertical plane which optimize points selection. 
 
The correct orientation of the fragment, or that of the relevant  plane of section, can be found 
analysing the normal components in the standard point cloud data: at any point of the cloud is 
associated an average normal to the closest faces of the corresponding triangulated surface. For 
instance it is possible to automatically  select planar regions of the surface analyzing tstatistical 
properties of nearby normal directions and to check precise alignments using specific properties and 
symmetry. 
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We then look for a parametric curve fitting the selected  points, like in Sec. 2, on the chosen plane 
(see Fig. 1).  
 

  
Fig. 3.  Left: points on a molding section of a surveyed fragment. Right: molding interpolating  
curve of a column base section, inflection points detection and final geometrical reconstruction 

 
Special points on the parametric curve, such as point of discontinuity in the direction of normal 
vectors and inflection points, allow an automatic geometrical moulding construction which can be 
translated in feature elements of the database and used in matching procedures.  
 
As another example we show in Fig.4 a superposition of  vertical parametric sections to check 
symmetries in coffers dimensions and placement in Borromini’s San Carlino alle Quattro Fontane 

dome.  

 
 

Fig. 4.  Left: point cloud of a portion of S. Carlino’s dome and selected points on a vertical 

section. Right: vertical sections comparison. The distance between two different curves can be 
measured using their parametric representation 
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Two different sectional curves represent the central molding profile of coffers placed in different 
positions on the dome. Curve profile gives informations on single coffers (octagons and crosses) 
size and its simmetric properties, but also on their mutual orientation and the geometrical shape of 
the dome intradox. 
 
The distance between the two curves, and other geometrical features, can be measured using their parametric 
representation. 
 
Comparison between the curves gives informations on simmetric properties of the dome and 
indirectly on its construction procedure. 
 
 
4 Optimal fluted column model 
 
From the survey of a ruined column drum (the same shown in Fig. 1), the second algorithm 
example shows how it is possible to find an optimal fluted column model (see [10]). 
 
A simple n-fluted column section model can be easily constructed: take a circle C0 of radius r0 and 
a smaller circle C of radius r centered on a point of C0 and call P one of the two intersection points 
of  C with C0 (see Fig. 5). The coordinates of the point P are then immediately computed as a 
solution of the system in Fig. 5. Also the angular distance  between consecutive flutes is easy to 
compute and these formulas allow a parametric section model of n-fluted column of radius r0 
depending only on the size of r. 
 

        
 
Fig. 5.  n-fluted column section model: P coordinates and the angle  between consecutive flutes 
are easily computed 

 
The point cloud of the surveyed column fragment of Fig. 1 are shown in Fig. 6a projected on 
a vertictal plane. The projection is not completely orthogonal to the best cylinder containing the 
fragment thus the black border of the projection (see Fig. 6a) appears thicker than needed. 
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In Fig. 6b the same fragment is shown with a better orientation and cutting out the drum basis.  
 

 
 
Fig. 6.  a) Projected points of the drum on a plane: the projection is not completely orthogonal 
to the best cylinder containing the fragment; b) The same projection with a better orientation 
and cutting out drum basis. Radii r and r0 can be estimated on a proper scale 

 
Radii r and r0 can then be estimated on a proper scale and the section model used to reproduce the 
original column, taking into account historical and architectural order information about the shape 
of a planar section containing column axis (entasis, tapering). 
 
The n-fluted column section model of Fig. 5 agrees very well with the projected points of Fig. 6b 
whose border represents an optimal vertical section of a ruined fallen column fragment. Note that 
the size of the drum which has been projected is around 1 meter. 
 
Comparing a cylindrical projection of the oriented point cloud with several section models, allows a 
very precise measure of column and flutings radii and then a possible drum reposition along the 
virtually reconstructed column. 
 
 
5 Lines of fracture  
 
The third application is for the broken statue reconstruction of S. Andrea at Stiffe, L’Aquila (see [9]) 
and shows the use of section curves to detect lines of fracture which could be tested for matching 
probability. 
 
Points on a given planar section of a surveyed statue fragment (see Fig. 7 and Fig. 8) are obtained 
first as projection on the given plane (as in Sec. 2) and we look for a parametric curve which 
interpolates these points using an automatic procedure. Then we take uniformly spaced points on 
the parametric interpolating curve and use automatic inflection points detection to select special 
points depending on geometrical properties of the parametric representation (see Fig. 7). 
 
These nodal points on many different parallel sections might line up to evidentiate a line of fracture 
(see Fig. 8) where the normals to the surface of the 3D-model of the surveyed fragment change 
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suddenly direction: the problem of reconstructing a broken statue from its pieces can then be 
attacked  by testing high matching probability checking corresponding curves and not only surfaces 
of contact. 

 
 

Fig. 7.  Points on a given planar section of the surveyed statue fragment of Fig. 8: a) projection 
of selected points on the given plane; b) uniformly spaced points on an interpolating curve close 
to the selection; c) parametric curve and automatic inflection points detection 
 

All measures have been optimized up to a certain error using the processed data and have been 
verified and improved after any new fragment addition or change in a suitable database. 

 
 
Fig. 8.  Left: a fragment of the statue of S. Andrea at Stiffe, L’Aquila. Right: parallel planar 
section curves with some inflection points (the same as in Fig. 7c) lined up on lines of fracture.  

 
Some of the original algorithms mentioned here have been also applied in different contexts.  
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6 Conclusions 
 
Parametric planar sections of a point cloud are good starting point to analyze special features of 
a given surveyed architectural or archaeological object. Some interesting questions about the object 
at study can be partially answered using algorithms to construct the closest parametric curve to the 
points based mainly on point cloud coordinates. 
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