UNIVERSITÀ DEGLI STUDI ROMA TRE

Dipartimento di Architettura - Istituzioni di Matematiche I - a
a 2017-18 Proff. C. Falcolini, P. Magrone

PRIMA prova in corso d'anno, 25 novembre 2017

Nome	Cognome		Matricola			
Le risposte vanno Eser.	accompagna I	te da spiegazi	oni esaurienti III	. Vanno consegn	ati SOLO qu	esti fogli
Voto						
	I.	Algebra linea	re nel piano	cartesiano		
i) Verificare se i vet	tori $\mathbf{v} = (1, -2)$) e $\mathbf{w} = (2, 1)$ so	no ortogonali.			
						_
ii) Dati i tre punti d	lel piano $A(2, -$	-1), B(5; -3), C	f(0;-2), verifica	are che il triangolo	ABC non sia r	ettangolo.
iii) Determinare sul punto sull'asse y ha						rimento: un

II. Rette parametriche, matrici

- i) Scrivere le equazioni parametriche della retta $\mathbf{r}(\mathbf{t})$ passante per i punti $P_1=(4,0), P_2=(7,1)$ e disegnare la retta;
- ii) Data la matrice di rotazione M= $\begin{pmatrix} 1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & 1/2 \end{pmatrix}$ calcolarne il determinante. Applicare la matrice alla retta $\mathbf{r}(\mathbf{t})$ trovata al punto (i) e scrivere le equazioni parametriche della nuova retta $\mathbf{r}'(\mathbf{t})$, ruotata.

iii) La matrice del punto (ii) di che angolo ruota i punti del piano? Disegnare la retta ruotata.

III. Continuità

- (i) Si dia la definizione di funzione continua in un punto x_0 .
- (ii) Data la funzione

$$f(x) = \begin{cases} k + \frac{\sin(k^2 x)}{2x} & \text{per } x > 0\\ 2(k-2)x^2 + 2kx + 2 & \text{per } x \le 0 \end{cases}$$

 $(a)\,$ per quali valori di k (se esistono) la funzione è continua in $x_0=0$?

(b) Per quali valori di k la funzione è continua in tutto $A=(-\infty,0)$?

IV. Derivate

Calcolare la derivata delle funzioni

(i)
$$f(x) = x^3 + \frac{x^2 + 4x}{\sqrt{x}}$$

(ii)
$$g(x) = \sin(e^{-3x^2})$$

V. Studio di funzione

Data la funzione

$$f(x) = \frac{(x+5)(5x-1)}{x^2 - 8x + 15}$$

determinare esplicitamente:

- (i) Il dominio di definizione di f(x);
- (ii) eventuali asintoti verticali di f(x) calcolando i relativi limiti;

 $(iii)\,$ eventuali asintoti orizzontali dif(x) calcolando i relativi limiti;

(iv) eventuali punti di massimo o di minimo relativo di f(x);

(v) Disegnare il grafico di f(x).