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Abstract. In Rome a metallic geodesic dome (1928) is still visible in its structure. The 
first geodesic dome ever built, in Jena (1926), is not visible any more, therefore the 
roman one is probably the eldest existing geodesic dome. Both the one in Jena and that 
in Rome are metallic grids and were planned to support a (spherical) screen for a 
planetarium. To argue it deserves the attribute “geodesic” we performed a first onfield 
topological survey concerning the vertex degrees. 
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1 Introduction 

It is often asked what can science do for other fields of human activities. A beautiful story 
going the other way is that of geodesic domes. An architectural invention went on to live a 
life of its own in today living science. The topological dual of a “geodesic dome”, is today 
called a “fullerene”, and keeps being object of research in various scientific fields. It is 
therefore interesting to inquire both how old the architectural idea of this space organization 
has been, and how much it went into unforseen fields. In this paper we address the first 
question, that of architectural earlier such structures. Before Buckminster Fuller [4], other 
metallic grid geodesic domes had been built and patented. Their geometry is different from 
that of Fuller, in that they do not proceed from the projection of a platonic solid onto a sphere. 
They retain the symmetry of a sphere, but as metallic grids they are not topologically 
equivalent to those of Fuller.  

The interest in Buckminster Fuller’s precise organization of space later inspired several 
studies. One of these later works, which was awarded a Nobel prize in Chemistry in 1996, [1], 
was the synthesis of a stable molecule by a particular arrangement of atoms given by the 
topological dual of the type of geodesic domes obtained  by Fuller. The molecule was thus 
called "fullerene" in his honour, being the topological dual of the type geodesic domes 
obtained by Fuller. The importance for mathematicians is that a fullerene is given by a 
topological definition. The usual visualization model for a molecule is that of a polyhedron 
where the atoms are in the vertices, and the edges represent chemical valence. To study the 
interactions between the atoms whilst maintaining the polyhedron with straight segments of fixed 
length as edges means we are thinking, mechanically, of a “stick model”, i.e., one where the distances 
between atoms are preserved. In fact interactions among atoms could be of a different nature; 
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one such interaction is modeled mechanically as “springs” [8]. Already this observation 
strongly underlines the importance of the topological (non metric) definition of the spatial 
organization of fullerenes. The importance of fullerenes, in fact is that it is an entire class of 
possible molecules, which keep being studied in their richness. 
 
By following the topological clue of identifying vertices by their degree, we were able to 
establish the similarity between a 1926 dome built in Jena (Germany) and one built in 1928 in 
Rome (Italy). Both domes are intended for use as planetariums and are topologically different 
from Fuller's well known domes. 
 
 
2 Geodesic architectural surfaces, the math 
 
Given two points on a surface, we call “geodesic line” a line, which connects the two points, 
and is of minimum length on the surface. Therefore a geodesic line is a path minimizing 
locally distances on a surface. Such lines, evidently, depend on the surface they lie upon. For 
elementary introduction to geodesics, we recommend the first chapter of [14] and the 
beautiful booklet [12], illustrating geodesics on a sphere and on locally Euclidean surfaces, 
such as cylinders, without resorting to variational calculus. In the last two decades, a renewed 
interest has arisen, both from the structural engineering and architectural field, to exploit the 
elegance and structural efficiency of structural surfaces. This interest also prompted studies 
on different possible geodesic structures of built surfaces [3, 13]. 
 
We also define “geodesic” a triangular tessellation of a surface, in which some consecutive 
(possibly curved) sides of the triangles lie along geodesic curves of the surface. In this sense 
the triangulation is “intrinsic” to the surface, as much as geodesic curves are “intrinsic” to it. 
The surface, thus triangulated along geodesics, defines a lattice of points. If we join the lattice 
points by straight segments now, we have an approximation of the actual geodesic 
triangulation. These straight edges of the triangles can be designed as bars, and so can the 
joints with dihedral angles at each vertex; such triangulation with straight edges, with some 
requirement of regularity, is what is called a geodesic surface in contemporary architecture, 
and is used in general surfaces. The advantage of using triangular arrangements in 
architecture is that a triangle is hardly deformable, and always in a single plan.  
 
Buckminster Fuller used the expression “geodesic dome” in his patent Building construction-
US2682235A–29/06/1954 (Figure 1). His first patent of a geodesic dome concerned grid-shell 
domes. In his patents he speaks strictly and explicitly about spherical surfaces [1]. 
 

“Of or pertaining to great circles of a sphere, or of arcs of such 
circles; as a geodesic line, hence a line which is a great circle 
or arc thereof; and as a geodesic pattern, hence a pattern 
created by the intersections of great circle lines or arcs, or their 
chords.” 
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Figure 1. Buckminster Fuller's patent for Building construction (1954), US2682235-A, sheets 

1 and 2. 
 
He had probably discussed such geometries with other artists and with geometers at Black 
Mountain College in the 1940’s [10]. Subsequently, Fuller studied various possibilities. 
Important to our study is the fact that his patents and studies (unlike previous ones) deal with 
obtaining these geodesics by projecting a Platonic solid onto a circumscribed sphere, or the 
same procedure from semiregular polyhedra.  
 
3 Earlier geodesic architectural surfaces 
 
It is known that a spherical grid dome had been carried out successfully in Jena (Germany), 
culminating in the 1926 dome for the planetarium [2]. Already in 1922, Zeiss had 
experimented with the design of structures and screens for the projection of starry skies in a 
hemispherical hall [9]. The experiments were undertaken on commission from the Deutsches 
Museum of Munich, and realized in Jena, the town where Zeiss had its headquarters. Walther 
Bauersfeld and Franz Dischinger (of the firm of Dykerhoff & Wydmann) built the dome of 
diameter 16 meters. The Jena metallic structure was intended to be, and in fact was, the inner 
reinforcement for the thin shell of reinforced concrete that constituted the surface for the 
Planetarium projections. In this sense, such a dome definitely needs to be as spherical as 
possible, which presents a challenge for its construction. A few years later, in 1928 another 
Planetarium was built in Rome, Italy. Its inner structure was again a metallic triangulation of 
a sphere. There is less information on this dome than that of Jena. On the other hand, the 
dome is still on place. We will here address the geometric structure of the metallic grid-shell. 
 
3.1 The Planetarium of 1928 in Rome 
 
The geodesic dome of the first Planetarium in Rome has a diameter of about 19 meters. The 
metallic structure, still visible, used to serve as the supporting frame for a spherical cap that 
was required for the projections of the sky. This cap was built in wood with panels of 
reinforced canvas, a perishable material. Unfortunately, there is no photographic information 
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about the screen cap, so it is not known how regular and smooth the actual spherical surface 
was.  The metallic structure, instead, is visible in its original location, inside the Imperial 
artifacts preserved to this day. The result is a beautiful cohabitation of a dome in opus 
caementicium (Roman concrete) that pertains to the Imperial Baths (298-306 CE), and 
harbors the metallic structure of the twentieth century. Probably this is why the metallic one is 
so well maintained, unlike the one in Jena.  
 

 
Figure 2. Planetarium in Rome (photo by Casabella. 1998, n. 654, March). 

 
The Planetarium was inaugurated in 1928, and for its functioning, Germany endowed Italy 
with a powerful Zeiss projector, as part of the restitution for war damages from WWI [11]. 
Therefore the Jena Planetarium had already a kinship to the Rome one. 
 
The kinship between the structure of the dome supporting the spherical screen in Rome, and 
that of Jena are evident [9]. The structure in Rome, built a few years later, afforded a larger 
diameter.  
 
We refer to the appendix for the topological definitions and theorems. The geometry and the 
topology of the Planetarium seem very similar to what is known about that in Jena, from 
historical photographs. In particular, vertices have degree 5, 6, 71 (Figure 2). This seems 
peculiar to the modern eye accustomed with other geodesic domes. To the modern spectator, a 
degree 7 stands off. Modern geodesic domes are usually taken to the topological dual of a 
modern “fullerene”.  It therefore has triangular faces, and only vertices of degree 5 or 6. The 
solid being topologically “simple”, it is easy to prove that there are exactly 12 vertices of 
degree 5, as we report in the appendix. Moreover to ensure symmetry, usually modern 
architectural geodesic domes are projections of regular or semi-regular polyhedra, none of 
which have vertexes of degree 7. 
 

                                                
1 Degree of a vertex, in a polyhedron, is the number of edges meeting at that vertex. 
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This is why, to a modern mathematical eye, a vertex of degree 7 stands off to the sight, and 
we proceeded to survey only these. We do not know why there are such vertices, but they are 
there, both in Rome and in Jena: we found the same kind of vertices in the old pictures for 
Jena, which are visible in the photos we shot at the Planetarium in Rome, and in the same 
spatial arrangement. In Figure 3 we indicate these vertices, which seem to form a pattern that 
is interesting per se. 

 
 
 

 
Figure 3. Planetary Jena (historical photo from Greco C., Le prime cupole in cemento 

armato sottile, 1997, p.298) and Planetarium in Rome (photo by Casabella, 1998, n. 654, 
March). In the photos we indicate vertices of degree 7 and vertices of degree 5. 
 
Structurally speaking, in both domes a triangular grid develops approximating a spherical 
shape, in a structure of surprising resistance, given the overall dimensions of the dome and the 
slenderness of the structural elements. In Rome the bars are made with metallic plates. They 
are then connected at their ends with iron disks, fastened with bolts [11]. 

 
3.2 A metallic twentieth century structure inside a Roman imperial bath hall 

 
In Rome the Planetarium is located in a large hall of octagonal plan, already possessing a 
dome, the Octagonal Hall of the ancient Baths of Diocletian. At the time of the construction 
of the Planetarium, in the early 20th century, the Diocletian Baths hosted the Museo 
Nazionale Romano, as it does today. The choice of this location allowed the planetarium to be 
internal, shielded from weather, without having to build a large construction to house it. The 
Planetarium was positioned in the Octagonal Hall, in the northwest wing of the Baths of 
Diocletian (whose construction began in 298 CE and inaugurated in 396 CE). The Baths were 
part of the Western Gymnasium; its function is not completely clear. It probably carried a 
fountain in the center [11]. Recent archaeological results [7] assign it to a secondary 
Frigidarium; in Roman Baths, hot baths were followed by successive spaces to gradually cool 
off, Calidarium, Tepidarium and Frigidarium. The Frigidarium was often circular. 
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A dome is a dome…: a dome can accommodate more domes. In this case, the visitor today 
faces a large Roman Hall with a slender, elegant metallic structure, and the possibility of a 
third dome, made out of screen, over which the sky would be projected. 

The spherical geometry enables the two domes to be in dialogue with one another. The 
brickwork umbrella dome, with a diameter of 22 meters, surrounds a concentric metallic grid, 
with a diameter of 19 meters, creating an embracing unitary central space.  

Today the structure is visible thanks to restoration and refitting (1983-97), when it was 
decided to remove the hemispherical screen for the astronomical projections, while preserving 
skeletal structure, made of slender linear metallic elements. This hemispherical grid, with its 
large mesh, allows visual transparency, to the opaque brickwork cover, reinforcing the 
perception of the shared geometry between the two domes. The architect of the restoration 
was G. Bulian [5]. During this latter renovation Bulian decided to place some statues of the 
Roman Imperial period. The overall effect in such a wide emptiness reinforces a sense of 
spaciousness. 

Appendix. How many pentagons to a fullerene? 

As said in the introduction, “fullerenes” indicate a type of spatial arrangement for a molecule, 
and their name is a homage to Buckminster Fuller, by the field of Chemistry. The spatial 
arrangement, in turn spurned research in several scientific field.   

We include here a definition for a fullerene, and a proof to the statement reported in section 3 
about fullerenes. The statement itself is stunningly simple, its proof follows easily from 
Euler’s formula for simple polyhedra, but is not often reported in literature, and is a basic fact 
about fullerenes.  

Definition 1: A polyhedron is “Simple” if it can be deformed into a sphere by a continuous 
transformation.  

Definition 2: a “fullerene” is a topologically simple polyhedron whose faces are pentagonal 
or hexagonal, and all vertices are of degree 3.  

Notice there is no restriction about regularity of faces or their quantities, or symmetries. In 
fact, this theorem is purely topological. 

Theorem: A fullerene contains (exactly) 12 pentagonal faces. 

Proof: Let V denote the number of vertices, E the number of edges, and F the number of 
faces of the polyhedron under study. 

A fullerene is topologically simple, so Euler’s formulas holds for it (see for instance [6]): 

V – E + F = 2 

Let us denote as F5 the number of pentagonal faces, and as F6 the number of hexagonal faces. 
We can then rewrite Euler formula specifically for a fullerene: 

V - E + F5 + F6 = 2 
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We can count all edges counting all vertices and multiplying by the number of edges meeting 
in each vertex (the degree of the vertex). Keeping in mind that obviously each edge belongs to 
2 vertices (its end-points), and by hypothesis 3 edges meet in each vertex, it means that 
counting vertices and multiplying by 3 we count each edge twice. Thus  

3 V = 2 E 

By the same token, we can count all edges by counting all faces and multiplying by the 
number of edges of each face. Keeping in mind that obviously each edge belongs to 2 faces; it 
means by counting each of them face by face, we count them twice; counting face by face, we 
know each pentagonal face has 5 edges, and each hexagonal face has 6 edges:  

2 E = 5 F5 + 6 F6

Substituting these identities into Euler’s formula for a fullerene, written above, we get 

6 V - 6 E + 6 F5 + 6 F6 = 12 

2 E – 6 E + (5 F5 + 6 F6 ) + F5 = 12 
-2 E + 2 E + F5 = 12 

F5  = 12 

Which is what we wanted to prove. 
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